48 research outputs found

    Quantum State Tomography of a Single Qubit: Comparison of Methods

    Full text link
    The tomographic reconstruction of the state of a quantum-mechanical system is an essential component in the development of quantum technologies. We present an overview of different tomographic methods for determining the quantum-mechanical density matrix of a single qubit: (scaled) direct inversion, maximum likelihood estimation (MLE), minimum Fisher information distance, and Bayesian mean estimation (BME). We discuss the different prior densities in the space of density matrices, on which both MLE and BME depend, as well as ways of including experimental errors and of estimating tomography errors. As a measure of the accuracy of these methods we average the trace distance between a given density matrix and the tomographic density matrices it can give rise to through experimental measurements. We find that the BME provides the most accurate estimate of the density matrix, and suggest using either the pure-state prior, if the system is known to be in a rather pure state, or the Bures prior if any state is possible. The MLE is found to be slightly less accurate. We comment on the extrapolation of these results to larger systems.Comment: 15 pages, 4 figures, 2 tables; replaced previous figure 5 by new table I. in Journal of Modern Optics, 201

    Tighter quantum uncertainty relations follow from a general probabilistic bound

    Get PDF
    Uncertainty relations (URs) like the Heisenberg-Robertson or the time-energy UR are often considered to be hallmarks of quantum theory. Here, a simple derivation of these URs is presented based on a single classical inequality from estimation theory, a Cram\'er-Rao-like bound. The Heisenberg-Robertson UR is then obtained by using the Born rule and the Schr\"odinger equation. This allows a clear separtion of the probabilistic nature of quantum mechanics from the Hilbert space structure and the dynamical law. It also simplifies the interpretation of the bound. In addition, the Heisenberg-Robertson UR is tightened for mixed states by replacing one variance by the so-called quantum Fisher information. Thermal states of Hamiltonians with evenly-gapped energy levels are shown to saturate the tighter bound for natural choices of the operators. This example is further extended to Gaussian states of a harmonic oscillator. For many-qubit systems, we illustrate the interplay between entanglement and the structure of the operators that saturate the UR with spin-squeezed states and Dicke states.Comment: 8 pages, 1 figure. v2: improved presentation, references added, results on the connection between saturated inequality and entanglement structure for multi-qubit states adde

    Optimised surface-electrode ion-trap junctions for experiments with cold molecular ions

    Full text link
    We discuss the design and optimisation of two types of junctions between surface-electrode radiofrequency ion-trap arrays that enable the integration of experiments with sympathetically cooled molecular ions on a monolithic chip device. A detailed description of a multi-objective optimisation procedure applicable to an arbitrary planar junction is presented, and the results for a cross junction between four quadrupoles as well as a quadrupole-to-octupole junction are discussed. Based on these optimised functional elements, we propose a multi-functional ion-trap chip for experiments with translationally cold molecular ions at temperatures in the millikelvin range. This study opens the door to extending complex chip-based trapping techniques to Coulomb-crystallised molecular ions with potential applications in mass spectrometry, spectroscopy, controlled chemistry and quantum technology.Comment: 19 pages, 10 figure

    Using Mathematica for Quantum Mechanics: A Student's Manual

    Full text link
    This book is an attempt to help students transform all of the concepts of quantum mechanics into concrete computer representations, which can be constructed, evaluated, analyzed, and hopefully understood at a deeper level than what is possible with more abstract representations. It was written for a Master's and PhD lecture given yearly at the University of Basel, Switzerland. The goal is to give a language to the student in which to speak about quantum physics in more detail, and to start the student on a path of fluency in this language. On our journey we approach questions such as: -- You already know how to calculate the energy eigenstates of a single particle in a simple one-dimensional potential. How can such calculations be generalized to non-trivial potentials, higher dimensions, and interacting particles? -- You have heard that quantum mechanics describes our everyday world just as well as classical mechanics does, but have you ever seen an example where such behavior is calculated in detail and where the transition from classical to quantum physics is evident? -- How can we describe the internal spin structure of particles? How does this internal structure couple to the particles' motion? -- What are qubits and quantum circuits, and how can they be assembled to simulate a future quantum computer?Comment: 164 pages, 5 chapters; third edition with major additions: included executable Mathematica notebooks; included solutions to exercises; included Quantum Circuits, Rashba model, Jaynes-Cummings mode

    Conformal carpet and grating cloaks

    Full text link
    We introduce a class of conformal versions of the previously introduced quasi-conformal carpet cloak, and show how to construct such conformal cloaks for different cloak shapes. Our method provides exact refractive-index profiles in closed mathematical form for the usual carpet cloak as well as for other shapes. By analyzing their asymptotic behavior, we find that the performance of finite-size cloaks becomes much better for metal shapes with zero average value, e.g., for gratings.Comment: added Ref. 12; added 2 figures; reformatte

    Quantum metrology with nonclassical states of atomic ensembles

    Full text link
    Quantum technologies exploit entanglement to revolutionize computing, measurements, and communications. This has stimulated the research in different areas of physics to engineer and manipulate fragile many-particle entangled states. Progress has been particularly rapid for atoms. Thanks to the large and tunable nonlinearities and the well developed techniques for trapping, controlling and counting, many groundbreaking experiments have demonstrated the generation of entangled states of trapped ions, cold and ultracold gases of neutral atoms. Moreover, atoms can couple strongly to external forces and light fields, which makes them ideal for ultra-precise sensing and time keeping. All these factors call for generating non-classical atomic states designed for phase estimation in atomic clocks and atom interferometers, exploiting many-body entanglement to increase the sensitivity of precision measurements. The goal of this article is to review and illustrate the theory and the experiments with atomic ensembles that have demonstrated many-particle entanglement and quantum-enhanced metrology.Comment: 76 pages, 40 figures, 1 table, 603 references. Some figures bitmapped at 300 dpi to reduce file siz

    Bell correlations in a many-body system with finite statistics

    Get PDF
    A recent experiment reported the first violation of a Bell correlation witness in a many-body system [Science 352, 441 (2016)]. Following discussions in this paper, we address here the question of the statistics required to witness Bell correlated states, i.e. states violating a Bell inequality, in such experiments. We start by deriving multipartite Bell inequalities involving an arbitrary number of measurement settings, two outcomes per party and one- and two-body correlators only. Based on these inequalities, we then build up improved witnesses able to detect Bell-correlated states in many-body systems using two collective measurements only. These witnesses can potentially detect Bell correlations in states with an arbitrarily low amount of spin squeezing. We then establish an upper bound on the statistics needed to convincingly conclude that a measured state is Bell-correlated.Comment: 5+12 pages, 3+4 figure

    Quantum simulation of the hexagonal Kitaev model with trapped ions

    Full text link
    We present a detailed study of quantum simulations of coupled spin systems in surface-electrode ion-trap arrays, and illustrate our findings with a proposed implementation of the hexagonal Kitaev model [A. Kitaev, Annals of Physics 321,2 (2006)]. The effective (pseudo)spin interactions making up such quantum simulators are found to be proportional to the dipole-dipole interaction between the trapped ions, and are mediated by motion which can be driven by state-dependent forces. The precise forms of the trapping potentials and the interactions are derived in the presence of a surface electrode and a cover electrode. These results are the starting point to derive an optimized surface-electrode geometry for trapping ions in the desired honeycomb lattice of Kitaev's model, where we design the dipole-dipole interactions in a way that allows for coupling all three bond types of the model simultaneously, without the need for time discretization. Finally we propose a simple wire structure that can be incorporated in a microfabricated chip to generate localized state-dependent forces which drive the couplings prescribed by this particular model; such a wire structure should be adaptable to many other situations.Comment: 24 pages, 7 figures. v2: simplified the derivation of (28) without changing conclusions; minor edits. v3: minor edit
    corecore